合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 絲素蛋白作為表面活性劑實(shí)現(xiàn)納米級(jí)設(shè)備的水基加工
> 基于表面張力方法判斷物質(zhì)(或材料)的親水性(二)
> 調(diào)控表面粗糙度,新生產(chǎn)的抗縮孔鍍錫板露天72h表面張力為31mN/m
> 棕櫚酸二甘醇酰胺無(wú)堿條件下降低大慶原油/地層水界面張力——摘要、材料與方法
> 人胰島素的朗繆爾單分子層膜的表面化學(xué)和光譜學(xué)性質(zhì)——結(jié)論、致謝!
> 太陽(yáng)電池污染效應(yīng)試驗(yàn),微量天平在其中起到什么作用
> 最大氣泡壓力法表面張力的測(cè)量原理
> 表面張力能怎么玩?下面就是一些常見(jiàn)的小實(shí)驗(yàn)方案~
> 煤礦井下活性磁化水降塵機(jī)制及技術(shù)研究
> 地下水質(zhì)量標(biāo)準(zhǔn)(GB/T 14848-2017)
推薦新聞Info
-
> 不同質(zhì)量濃度、pH、鹽度對(duì)三七根提取物水溶液表面張力的影響(三)
> 不同質(zhì)量濃度、pH、鹽度對(duì)三七根提取物水溶液表面張力的影響(二)
> 不同質(zhì)量濃度、pH、鹽度對(duì)三七根提取物水溶液表面張力的影響(一)
> 氟硅表面活性劑(FSS)水溶液表面張力、發(fā)泡力、乳化力測(cè)定(三)
> 氟硅表面活性劑(FSS)水溶液表面張力、發(fā)泡力、乳化力測(cè)定(二)
> 氟硅表面活性劑(FSS)水溶液表面張力、發(fā)泡力、乳化力測(cè)定(一)
> 不同配方的水性氟丙樹脂涂料涂膜合成、性能指標(biāo)
> 芬蘭Kibron表面張力測(cè)試儀跟蹤氯乙烯懸浮聚合中的表面張力變化情況
> 泡泡消煙原理,不同質(zhì)量分?jǐn)?shù)堿劑發(fā)泡液表面張力的測(cè)試結(jié)果
> 什么是超微量天平,超微量天平使用方法、最小稱量值
?氧化石墨烯基復(fù)合膜材料的制備方法、應(yīng)用開(kāi)發(fā)及前景
來(lái)源:石油化工高等學(xué)校學(xué)報(bào) 瀏覽 492 次 發(fā)布時(shí)間:2024-06-18
氧化石墨烯因其特殊的物理和化學(xué)性質(zhì)成為近年來(lái)研究的熱門材料,有關(guān)氧化石墨烯基復(fù)合薄膜材料的制備、功能化及應(yīng)用成為當(dāng)下的前沿和熱門課題。
Langmuir-Blodgett(LB)技術(shù)可制備具有可控堆疊和厚度的高質(zhì)量薄膜,已被用于生產(chǎn)在分子水平上組織的材料。靜電紡絲技術(shù)被認(rèn)為是一種可連續(xù)不斷地制造聚合物微纖維/納米纖維的簡(jiǎn)單而通用的技術(shù),層層組裝法、溶液涂覆法等也是制備薄膜的常用技術(shù)。本文主要綜述了較為熱門的GO基復(fù)合LB膜、GO基靜電紡絲膜以及通過(guò)其他途徑制備的GO基復(fù)合膜材料的制備方法和應(yīng)用開(kāi)發(fā),并對(duì)其應(yīng)用前景和面臨的挑戰(zhàn)進(jìn)行了總結(jié)與展望。
主要研究?jī)?nèi)容及結(jié)論
石墨烯作為一種新型二維超薄碳材料,易于吸附分子,是天然的襯底。當(dāng)某些分子吸附在石墨烯表面時(shí),分子的拉曼信號(hào)會(huì)得到明顯的增強(qiáng),這種拉曼增強(qiáng)效應(yīng)被稱為石墨烯增強(qiáng)拉曼散射效應(yīng)(GERS)。X.LING等為了進(jìn)一步證實(shí)GERS中的化學(xué)增強(qiáng)機(jī)制,使用LB技術(shù)構(gòu)建了原卟啉Ⅸ(PPP)的單層或多層有序聚集體以及與石墨烯接觸的PPP的可控分子構(gòu)型(見(jiàn)圖1)。
圖1樣品制備過(guò)程示意圖
D.D.KULKARNI等為了最大限度地減少GO片的折疊和起皺,提出可用LB技術(shù)代替常規(guī)吸附和自旋鑄造(見(jiàn)圖2)。當(dāng)使用LB技術(shù)沉積時(shí),GO片因其柔性而產(chǎn)生的折疊和褶皺基本上可以最小化。由單層大橫向尺寸的平面GO片組成的納米級(jí)多層納米膜,具有出色的機(jī)械堅(jiān)固性,易于操作和轉(zhuǎn)移到合適的襯底上,從而進(jìn)一步與微機(jī)電設(shè)備集成。
圖2獨(dú)立GO‐LbL膜的制作和組裝示意圖
此外,將經(jīng)典兩親分子的Langmuir單層與酶結(jié)合是保持生物大分子催化性能的一種方式。F.A.SCHLL等研究了磷脂LB膜固定化青霉素酶(PEN),將GO加入青霉素酶‐脂質(zhì)Langmuir單層膜中,并作為L(zhǎng)B膜轉(zhuǎn)移到固體載體上,評(píng)估了酶的催化性能(見(jiàn)圖3)。結(jié)果表明,GO作為由2,2‐二羥甲基丙酸(DMPA)和PEN組成的LB膜的添加劑,被固定在LB膜的PEN中;GO存在于酶脂LB膜中,不僅可以調(diào)節(jié)青霉素酶的催化活性,而且有助于數(shù)周后仍保持其酶活性。研究結(jié)果加強(qiáng)了混合納米結(jié)構(gòu)薄膜的重要性,證明了使用由脂質(zhì)、GO和酶組成的LB膜應(yīng)用于光學(xué)生物傳感器的可行性,對(duì)應(yīng)用傳感器的生物電子設(shè)備研究具有重要意義。
圖3磷脂LB膜固定化青霉素酶原理圖
結(jié)論和展望
目前,GO薄膜的制備已趨向成熟,GO基復(fù)合膜相關(guān)的制備技術(shù)與應(yīng)用也取得了很大的進(jìn)展。然而,目前的組裝方法存在一定的局限性,如GO篩選合適的官能團(tuán)制備高效的GO基復(fù)合薄膜的方法,有機(jī)小分子在組裝過(guò)程中破壞石墨烯結(jié)構(gòu)而影響應(yīng)用范圍,此類問(wèn)題有待進(jìn)一步探究。這些問(wèn)題使GO基復(fù)合膜的多功能化遇到了挑戰(zhàn),因此尋找并開(kāi)發(fā)更優(yōu)異、更高效的組裝方法十分必要??傮w而言,GO的特殊結(jié)構(gòu)和性質(zhì)使其具有重大的科學(xué)研究?jī)r(jià)值和廣闊的應(yīng)用前景。
通信作者簡(jiǎn)介